3 research outputs found

    Fast (1+ε)(1+\varepsilon)-Approximation Algorithms for Binary Matrix Factorization

    Full text link
    We introduce efficient (1+ε)(1+\varepsilon)-approximation algorithms for the binary matrix factorization (BMF) problem, where the inputs are a matrix A{0,1}n×d\mathbf{A}\in\{0,1\}^{n\times d}, a rank parameter k>0k>0, as well as an accuracy parameter ε>0\varepsilon>0, and the goal is to approximate A\mathbf{A} as a product of low-rank factors U{0,1}n×k\mathbf{U}\in\{0,1\}^{n\times k} and V{0,1}k×d\mathbf{V}\in\{0,1\}^{k\times d}. Equivalently, we want to find U\mathbf{U} and V\mathbf{V} that minimize the Frobenius loss UVAF2\|\mathbf{U}\mathbf{V} - \mathbf{A}\|_F^2. Before this work, the state-of-the-art for this problem was the approximation algorithm of Kumar et. al. [ICML 2019], which achieves a CC-approximation for some constant C576C\ge 576. We give the first (1+ε)(1+\varepsilon)-approximation algorithm using running time singly exponential in kk, where kk is typically a small integer. Our techniques generalize to other common variants of the BMF problem, admitting bicriteria (1+ε)(1+\varepsilon)-approximation algorithms for LpL_p loss functions and the setting where matrix operations are performed in F2\mathbb{F}_2. Our approach can be implemented in standard big data models, such as the streaming or distributed models.Comment: ICML 202

    Cofinitary groups

    No full text
    Das Thema dieser Arbeit sind kofinitäre Gruppen, eine spezielle Klasse an Untergruppen der unendlichen Permutationsgruppen. Wir beginnen mit einer Übersicht der algebraischen Resultate für diese Gruppen. Die wichtigsten Resultate in diesem Kapitel sind strukturelle Einschränkungen der Kardinalität von kofinitären Gruppen durch ihre Orbitstruktur. In weiterer Folge betrachten wir Konstruktionen von kofinitären Gruppen mittels projektiver Limits und Automorphismen von Boolschen Algebren. Der Rest der Thesis befasst sich mit maximalen kofinitären Gruppen, wobei wir zuerst die möglichen Größen, sowie die kombinatorische Charakteristik a_g betrachten. In Kapitel 4 werden wir Forcing verwenden, um zu jedem Tupel (n, m) in N>0 x N eine maximale kofinitäre Gruppe zu finden welche n unendliche und m endliche Orbits aufweist, wodurch wir unendlich viele nicht isomorphe Gruppen konstruieren können. In Kapitel 5 konstruieren wir mittels Forcing eine maximale kofinitäre Gruppe in welche wir alle abzählbar unendlichen Gruppen einbetten können. Im letzten Kapitel zeigen wir eine Konstruktion, welche uns die möglichen Größen von maximalen kofinitären Gruppen in unserem Modell steuern lässt.The topic of this thesis is cofinitary groups, which are special subgroups of the infinite permutation group. We will begin by giving an overview of the algebraic properties of cofinitary groups. We will survey the algebraic properties of cofinitary groups, where the main results give us bounds on the size of cofinitary groups based on their orbit structure. We will then examine how to construct cofinitary groups using inverse limits and automorphisms of Boolean algebras. We then begin looking at maximal cofinitary groups and their possible sizes as well as the combinatorial characteristic a_g. In chapter 4 we will use forcing to show that there are infinitely many, non-isomorphic, maximal cofinitary groups, by constructing a group with n infinite and m finite orbits, for any tuple (n, m) in N>0 x N. In chapter 5, we use forcing constructions to show the existence of a maximal cofinitary group into which every countable group embeds. Finally, we show that we can tightly control the possible sizes of cofinitary groups in a model by adapting a novel proof from the theory of maximal almost disjoint families
    corecore